是否存在正整数组 (x,y,z),使 10(xy+yz+zx)=9xyz 成立?若存在,求出所有正整数组 (x,y,z);若不存在,请说明理由。
∵
\therefore 10xy+10yz+10zx=9xyz
\therefore 10 \times \dfrac{1}{x} +10 \times \dfrac{1}{y} +10 \times \dfrac{1}{z} =9
\therefore \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{9}{10}
不妨设 x \leq y \leq z.
又 \because x,y,z>0
\therefore x,y,z>1
则 \dfrac{1}{x} \geq \dfrac{1}{y} \geq \dfrac{1}{z}, \dfrac{1}{x} \geq \dfrac{3}{10}.
\therefore x<4.
分类讨论如下:
1^\circ \, x=2: 代入原式,得
\dfrac{1}{2}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{9}{10}
则 \dfrac{1}{y}+\dfrac{1}{z}=\dfrac{2}{5}
有 \dfrac{1}{y} \geq \dfrac{1}{5}.
\therefore 1 < y \leq 5.
\text{I.} \quad y=2: 代入上式解得 z=-10. (舍)
\text{II.} \quad y=3: 代入上式解得 z=15. (\sqrt{})
\text{III.} \quad y=4: 代入上式解得 z=\dfrac{20}{3}.(舍)
\text{IIII.} \quad y=5: 代入上式解得 z=5.(\sqrt{})
2^\circ \, x=3: 代入原式,得
\dfrac{1}{3}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{9}{10}
则 \dfrac{1}{y}+\dfrac{1}{z}=\dfrac{17}{30}
有 \dfrac{1}{y} \geq \dfrac{17}{60}
\therefore 3 \leq y<4. 则 y=3: 代入上式解得 z=\dfrac{30}{7}. (舍)
综上所述,(x,y,z)=(2,2,5),(2,5,2),(5,2,2),(2,3,15),(2,15,3),(3,2,15),(3,15,2),(15,2,3),(15,3,2).