QOJ.ac

QOJ

Time Limit: 1 s Memory Limit: 256 MB Total points: 100

#2028. Sum of Distances

统计

Bessie has a collection of connected, undirected graphs $G_1,G_2,\ldots,G_K$ ($2\le K\le 5\cdot 10^4$). For each $1\le i\le K$, $G_i$ has exactly $N_i$ ($N_i\ge 2$) vertices labeled $1\ldots N_i$ and $M_i$ ($M_i\ge N_i-1$) edges. Each $G_i$ may contain self-loops, but not multiple edges between the same pair of vertices.

Now Elsie creates a new undirected graph $G$ with $N_1\cdot N_2\cdots N_K$ vertices, each labeled by a $K$-tuple $(j_1,j_2,\ldots,j_K)$ where $1\le j_i\le N_i$. In $G$, two vertices $(j_1,j_2,\ldots,j_K)$ and $(k_1,k_2,\ldots,k_K)$ are connected by an edge if for all $1\le i\le K$, $j_i$ and $k_i$ are connected by an edge in $G_i$.

Define the distance between two vertices in $G$ that lie in the same connected component to be the minimum number of edges along a path from one vertex to the other. Compute the sum of the distances between vertex $(1,1,\ldots,1)$ and every vertex in the same component as it in $G$, modulo $10^9+7$.

INPUT FORMAT (input arrives from the terminal / stdin):

The first line contains $K$, the number of graphs.

Each graph description starts with $N_i$ and $M_i$ on a single line, followed by $M_i$ edges.

Consecutive graphs are separated by newlines for readability. It is guaranteed that $\sum N_i\le 10^5$ and $\sum M_i\le 2\cdot 10^5$.

OUTPUT FORMAT (print output to the terminal / stdout):

The sum of the distances between vertex $(1,1,\ldots,1)$ and every vertex that is reachable from it, modulo $10^9+7$.

SAMPLE INPUT:

2

2 1
1 2

4 4
1 2
2 3
3 4
4 1

SAMPLE OUTPUT:

4
$G$ contains $2\cdot 4=8$ vertices, $4$ of which are not connected to vertex $(1,1)$. There are $2$ vertices that are distance $1$ away from $(1,1)$ and $1$ that is distance $2$ away. So the answer is $2\cdot 1+1\cdot 2=4$.

SAMPLE INPUT:

3

4 4
1 2
2 3
3 1
3 4

6 5
1 2
2 3
3 4
4 5
5 6

7 7
1 2
2 3
3 4
4 5
5 6
6 7
7 1

SAMPLE OUTPUT:

706
$G$ contains $4\cdot 6\cdot 7=168$ vertices, all of which are connected to vertex $(1,1,1)$. The number of vertices that are distance $i$ away from $(1,1,1)$ for each $i\in [1,7]$ is given by the $i$-th element of the following array: $[4,23,28,36,40,24,12]$.

SCORING:

  • Test cases 3-4 satisfy $\prod N_i\le 300$.
  • Test cases 5-10 satisfy $\sum N_i\le 300$.
  • Test cases 11-20 satisfy no additional constraints.

Problem credits: Benjamin Qi

About Issues

We understand that our problem archive is not perfect. If you find any issues with the problem, including the statement, scoring configuration, time/memory limits, test cases, etc.

You may use this form to submit an issue regarding the problem. A problem moderator will review your issue and proceed it properly.

STOP! Before you submit an issue, please READ the following guidelines:

  1. This is not a place to publish a discussion, editorial, or requests to debug your code. Your issue will only be visible by you and problem moderators. Other users will not be able to view or reply your issues.
  2. Do not submit duplicated issues. If you have already submitted one, please wait for an moderator to review it. Submitting multiple issues will not speed up the review process and might cause your account to be banned.
  3. Issues must be filed in English or Chinese only.
  4. Be sure your issue is related to this problem. If you need to submit an issue regarding another problem, contest, category, etc., you should submit it to the corresponding page.

Active Issues 0

No issues in this category.

Closed/Resolved Issues 0

No issues in this category.